# Problem
What is the decimal equivalent of `0xBEEF`?
# Process
$\begin{split}
&=(\textrm{B}_{16}\cdot 16^3_{10})+(\textrm{E}_{16}\cdot16^2_{10})+(\textrm{E}_{16}\cdot16^1_{10})+(\textrm{F}_{16}\cdot16^0_{10}) \\
&=(11_{10}\cdot16^3_{10})+(14_{10}\cdot16^2_{10})+(14_{10}\cdot16^1_{10})+(15_{10}\cdot16^0_{10}) \\
&=45056_{10}+3584_{10}+224_{10}+15_{10} \\
&=\boxed{48879_{10}}
\end{split}$
# Answer
$
48879_{10}
$