# Problem What is the decimal equivalent of `0xBEEF`? # Process $\begin{split} &=(\textrm{B}_{16}\cdot 16^3_{10})+(\textrm{E}_{16}\cdot16^2_{10})+(\textrm{E}_{16}\cdot16^1_{10})+(\textrm{F}_{16}\cdot16^0_{10}) \\ &=(11_{10}\cdot16^3_{10})+(14_{10}\cdot16^2_{10})+(14_{10}\cdot16^1_{10})+(15_{10}\cdot16^0_{10}) \\ &=45056_{10}+3584_{10}+224_{10}+15_{10} \\ &=\boxed{48879_{10}} \end{split}$ # Answer $ 48879_{10} $