# Problem What is the octal equivalent of `0x5EED`? Hint: Convert to binary first. Don't forget the proper prefix in your answer. # Process Each hexadecimal digit can be converted to a 4-bit binary number. For hexadecimal numbers with multiple digits, the binary representation is just each hexadecimal digit converted to its 4-bit binary equivalent and then placed one after another from left to right. To convert a binary number to an octal number, you group the binary digits by 3 from right to left and convert that into it's octal equivalent. $\begin{aligned} 5_{16}&=0101_2\\ \textrm{E}_{16}&=1110_2\\ \textrm{E}_{16}&=1110_2\\ \textrm{D}_{16}&=1101_2\\ \end{aligned}$ $\begin{split} \textrm{5EED}_{16}&=\overbracket{0101_2}^{5_{16}}\overbracket{1110_2}^{\textrm{E}_{16}}\overbracket{1110_2}^{\textrm{E}_{16}}\overbracket{1101_2}^{\textrm{D}_{16}}\\ &=\overbracket{0}^{0_8}\overbracket{101_2}^{5_8}\overbracket{111_2}^{7_8}\overbracket{011_2}^{3_8}\overbracket{101_2}^{5_8}\overbracket{101_2}^{5_8}\\ &=\boxed{057355_8} \end{split}$ # Answer $057355_8$